4 research outputs found

    Causal Discovery from Temporal Data: An Overview and New Perspectives

    Full text link
    Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.Comment: 52 pages, 6 figure

    Study on Dynamic Characteristics of the Disc Spring System in Vibration Screen

    No full text
    To avoid too large exciting force in traditional linear vibrating screen and unstable working state in resonance screen, the disc spring system is applied in the linear vibration screen. The model of the disc spring system in vibration screen is established by simulation and experiment. The characteristics of modal and amplitude of the disc spring system in vibration screen are studied. We found that the disc spring system vibrates in vertical direction at the third-order natural frequency, which is consistent with the direction of the vibration screen when screening particles. Moreover, the third-order natural frequencies in simulation and experiment are basically consistent. Furthermore, the maximum amplitude of the disc spring system appears at 960 r/min (16 Hz), which is in accord with the third-order natural frequency. Meanwhile, the amplitude increases proportionally with the increase of exciting force, while the amplification factors are the same under three different exciting forces. This indicates that the disc spring system has excellent linearity. The results of research provide guidance for design and application of elastic components on the vibration screen

    A Study on the Influence of Different Constraint Modes and Number of Disc Springs on the Dynamics of Disc Spring System

    No full text
    In this work, the influences of constraint modes and the number of disc springs on the dynamic characteristics of the disc spring system are studied by simulation and experiment. The amplitudes and amplification factors of the disc spring system under different constraint modes and different numbers of disc springs are obtained. The results show that the maximum amplitude and amplification factor both appear at the constraint modes of locking and no preloading, which indicates that the locking and no preloading is the best constraint mode among the four different constraint modes. Moreover, the amplitude of the disc spring system first increases and then decreases with the number of disc springs increasing, while the amplification factor increases with the number of disc springs increasing. The maximum amplification factor (10.21 in experiment) of the disc spring system appears at 10 disc springs. By studying the relationship between the number of disc springs and amplification factor and damping, we find that the damping of the disc spring system can be reduced by increasing the disc spring numbers, and thus, the corresponding amplification factor can be improved. Furthermore, as the number of disc spring increases, the height differences of disc springs before and after locking are all close to 3 mm, which indicates that the amount of locking compression in the assembly process has a good consistency when the number of disc springs changes. The aforementioned works can provide guidance for the industrial production in screen vibration
    corecore